
 1

ES 52 - Teaching Fellow Button

Andrea Rodriguez-Marin Freudmann, Nicolas Weninger

Spring 2017

Abstract
The purpose of this project was to design and build a wireless communications system capable
of sending data over frequency modulated Infrared light in order to create a method by which
students in office hours can request help from a Teaching Fellow. The transmitter uses an
Arduino and a LM555 astable circuit to encode and transmit the data. The receiver uses analog
circuitry to condition the IR signal, which is passed through a phase locked loop to demodulate
the signal. After further processing, this is read by a microcontroller, which provides visual and
audio indication of a received signal. Although the final version met expected goals and
minimum specifications, potential improvements are discussed.

 2

I. Introduction and Problem Statement
In ES 52 office hours, the late night and the pressure often can get to both Teaching Fellows
(TFs) and students alike, especially for those in dire need of assistance in designing a
challenging monostable or grappling with the woes of potentiometers in the earlier days of the
class. To alleviate this, and to provide some nice electronic context to the Lowell D-Hall office
hours, we designed and built a “Teaching Fellow Button”. The TF button allows a student sitting
at a table to tell the TFs which problem they need help on and they are located so that the TF
knows which student it is. The TF unit would indicate when a transmission came in so that the
TFs would know that someone needed their help. This could make office hours fairer, livelier
and less chaotic, since TFs could ensure they were helping people evenly, and it would make
more efficient use of time, as the TFs can see everyone’s requests.

To achieve this, we decided to try our hand at wireless communication. After discovering that
radio frequencies were too high for the equipment we had in lab, along with the associated
challenges of HF design and communication on breadboards, we decided to use Infrared light at
comparatively lower frequencies. This was further motivated by the availability of several IR
components already in the lab. We knew that there were two predominant methods of wireless
communication: amplitude modulation and frequency modulation. We decided to try FM, as this
would be a novel topic that neither of us had explored before and seemed appropriately
challenging.

In brainstorming ideas for the project, we decided that transmitting digital data rather than
analog data made more sense for our application. We only needed to transmit small amounts of
data and analog transmission would have undoubtedly complicated the design and the precision
required to an unworkable extent to us with the given time.

Responsibilities
Both of us worked on several aspects of project, but we were each assigned a part to take
charge of. At large, this was the breakdown

Nicolas Andrea
Transmitter Circuitry Phase-Locked Loop

IR reception and filtration Filtered PLL signal processing
FSM Code Address and Question displays

Speaker circuitry
Figure 1: Breakdown of responsibilities

 3

II. Systems

Overview

Figure 2: Block Diagram

The project consists of two units: the transmitter - or the student button - and the receiver - the
TF unit. The transmitter allows the student to select a question that they are having trouble with
by cycling through numbers one to nine on a button press. In order to simulate multiple
transmission units for multiple students, three switches create an ‘address’ for the transmitter.
When the student wishes to make a request, the request must be set to ‘active’ status by turning
the ‘clear request’ switch off and upon pressing the ‘send’ button, a request is transmitted using
a 555 astable circuit.

 4

The receiver picks up the signal with a photo-transistor, whose emitter is connected to filtration
and amplification circuitry that creates a clean square wave. This is fed into a phase-locked loop
that gives a DC voltage dependant on frequency, which demodulates the frequency modulated
signal. This signal is passed through further processing circuitry before received by another
Arduino. This Outputs to two seven-segment displays, displaying the address from where the
request came from and the associated question. A speaker also gives an audio indication.

Power and Colour Scheme

Transmitter Breadboard
We are using a single supply from 0v to 5v. The Arduino microcontroller PCB provides a
regulated 5v single supply from USB power, which is either obtained from a computer or from a
wall. As this breadboard is entirely digital, there was no need for a dual supply system and by
sticking to single supply, we reached our expected goal for the transmitter.

Receiver Breadboard
As the receiver breadboard combines both analog and digital circuitry, it was imperative that we
had a dual supply scheme for the analog signals. We chose ±5v as this was a voltage that we
are both familiar designing for and several of our components in lab are rated for approximately
this voltage range. To avoid issues of connecting power supplies when we had the computer
connected to the Arduino, we added a diode to isolate the two.

Wire Colour Scheme

Red +5v

Black GND

Yellow -5v

Blue Digital circuitry

Green Analog circuitry

 5

1. Button Address and Clear Selection

Figure 3

Sub-Circuit Functionality and Explanation
In order to transmit address and other request data, we implemented a series of four SPST
slide-switches that would create a three-bit binary address number and the ‘clear’ bit.

Sub-Circuit Design Justification
These were configured as voltage dividers as we needed a logic LOW or HIGH for the parallel-
to-serial converter the switches are connected to. Initially we intended them to be connected to
the Arduino microcontroller directly, which would not have needed the external resistor by using
the internal pull-up resistors, but after we decided to use the parallel-to-digital converter, they
were required. The resistors are configured as pull-downs to make the signal active-HIGH,
simplifying the conceptual design later on.

 6

2. Question Selection

Figure 4

Sub-Circuit Functionality and Explanation
This block uses the rising edge of the filtered push-button to clock a 4-bit counter. The outputs
are connected to the 7-segment display (Numitron) driver to display the number. The NAND
gate connected to Qa and Qd is connected to the active low synchronous Load (LD) input that
resets the counter to its pre-loaded value of 1 when the counter has reached the count of 9.
This allows the user to cycle between question numbers when making a request.

Sub-Circuit Design Justification
When designing this block, we wanted a way for the user to be able to specify a question that
they were having trouble with. To add variety to the design, we decided to use a 74HC161
counter (asynchronous as we are not using the clear functionality) and a pushbutton that would
allow the user to cycle through questions 1 - 9 on the display. To achieve the resetting, the LD
input is asserted when the counter outputs 1001 by the NAND gate pulling LD low. On the next
button press, the rising clock edge caused the 74HC161 to reset to the loaded count of 0001.
When testing, it became clear that the button needed to be debounced to avoid inaccurate
button presses. We designed for fc = 100Hz by using R6 = 160Ω and C1 = 10uF but after
further experimentation the values of 1kΩ and 470pF were chosen. Upon reflection, it appears
that there may be Thevenin loading issues with this circuit, but it appears to work well
nevertheless.

 7

3. Question Display

Figure 5

Sub-Circuit Functionality and Explanation
The binary output of the 74HC161 counter is connected to the input of the 7-segment decoder
and driver U4, which is configured to display the binary value on the input on the Numitron
display.

Sub-Circuit Design Justification
We designed this circuit with the lab notes to help us. Through the testing procedure described
in the lab notes, we chose the current limiting resistor values of 82Ω for R8 - R14. In the lab 5
we characterized the numitrons to find their VI curve and then, based on those measurements,
calculated that to get 20mA of current we the resistors to be 82 ohms (since the numitron can
sink a maximum of 25mA it was a safe choice).

 8

4. Parallel to Serial Conversion

Figure 6

Sub-Circuit Functionality and Explanation
The parallel-to-serial shift-register U1 receives inputs from the three address bit switches, the
clear bit switch and the outputs of the question selection counter U3 and converts this to a serial
output that, using the shiftIn() command on the Arduino, is read into the microcontroller to be
transmitted via IR.

Sub-Circuit Design Justification
We added this block to increase the complexity of the digital circuitry and to reduce the number
of pins that we used on the Arduino. The 74HC597 is double-buffered, as opposed to the
74HC165, which does not have the storage buffer and thus does not require the additional clock
pulse on STcp[1]. Thus, our design requires an extra pin on the Arduino, while the double
buffering does not help hugely in its current implementation as we are not designing for fast
changing inputs. The reason we designed for the ‘597 is because at the time of construction, the
‘165 was not available to us and we were under time pressure to complete the transmitter
circuit. PL is asserted to clear current data and load new data. De-asserting PL allows the
Arduino to read in the serial data from Q7 on each rising edge on SHcp. As the ‘597 reads-out
the 0th bit before the first rising edge on SHcp, the FSM code on the Arduino compensates for
this by reading Q7, performing a bit-shift, read in the last 7 bits then performs another bit shift
operation. Please refer to the readData() function comments.

 9

5. Outgoing Signal Processing

Figure 7

Sub-Circuit Functionality and Explanation
The microcontroller is running an FSM loop that checks the status of the clear bit, read from the
parallel-to-serial shift register with the address bits and question selection nibble (half-byte).
Based on this, it pulses a high or low signal on A0 to control the transmission circuit to generate
the FM signal. The user makes a request by pressing the push button and if the request is to
ask for assistance, the status LED will illuminate. When the request is to clear a previous
request, the LED will extinguish. The user cannot make multiple active requests.

Sub-Circuit Design Justification
The user interface was designed so that we did not have to handle multiple requests at once
from one address, which would have complicated the receiving circuitry and code. We used an
Arduino in this situation rather than digital hardware to add digital complexity to the project in the
form of an FSM and to speed up construction, as we anticipated (correctly) that the receiving
analog circuitry would take up the majority of our time. The push button is configured as an
interrupt on D1 with its internal pull-up resistor activated to simplify external circuitry. The
interrupt allows the FSM to run at a very slow frequency 4Hz as we do not need to poll it
frequently. This makes the code easier for the transmission states, as there is no need for
several delay states and counters, and allows us to easily set the data rate as the frequency of
the FSM.

 10

6. IR Transmission

Figure 8

Sub-Circuit Functionality and Explanation
The LM555 IC is configured as a 50% duty cycle astable oscillator with a p-channel MOSFET
connected to the Arduino, able to switch in a buffered voltage to the CV pin that changes the
frequency of oscillation to create the frequency-modulated signal. The output is connected to an
ultra-bright 940nm IR LED.

Sub-Circuit Design Justification
The resistor for the IR LED was chosen by finding the forward voltage and current for the LED
at Vf = 1.6v and I = 100mA. The VN2222 has a resistance of 7.5Ω. So, R = [(5v – 1.6v) /
100mA] – 7.5Ω = 27Ω. 30Ω is used due to resistor tolerance. The output of the 555 is not able
to source 100mA as discovered in testing (despite what the datasheet says), as the waveform
went flat when the LED was connected directly. Adding the n-channel MOSFET resolved this
issue. We chose the 50% duty cycle topology to generate a square wave that would work best
with the PLL [5].

Initially, we used a n-channel MOSFET to switch in a capacitor in parallel with C2 in order to
change the oscillation frequency. While this worked well, the PLL would unlock from the
incoming signal on the receiver and not provide a valid output. It was discovered in testing that
the PLL did not unlock when the frequency was changed slowly rather than instantaneously.
The final design thus uses an RC circuit to slowly change the voltage at CV to change the
frequency, where the time constant = 0.2s. This constant was determined experimentally by
observing how the PLL behaved. Unfortunately, this time constant limits our transmission data
rate to 4Hz. When the p-channel MOSFET gate is at 5v, CV acts as though it is unconnected
and the 555 oscillates at 22kHz. When the MOSFET gate is at 0v, CV is held at 4.10v and the

 11

555 oscillates at 18kHz. This voltage was determined experimentally using the power supply
directly at CV and measuring the voltage with a scope. After creating this voltage with the
potential divider with R15 and R16, the 555 was not oscillating at the frequency expected.
Suspecting that we were facing thevenin loading issues, we placed a buffer U13 after the
voltage divider and before the MOSFET. This resolved the issue.

7. IR Reception and Filtration

Figure 9

Sub-Circuit Functionality and Explanation
The NPN W3DP38T phototransistor receives the IR signal emitted by the IR LED and generates
a voltage that pulses at the same frequency as the one emitted by the LED. This voltage is then
filtered using a band pass filter (a high pass followed by a low pass) to isolate the range that
included 18 kHz - 22 kHz. The circuit also amplifies the signal by a gain of approximately 225,
clipping at ±5v to generate a nice signal (fig.9).

Sub-Circuit Design Justification
The phototransistor was chosen because it was designed to capture the same wavelength that
the IR LED emits (940nm). We would get an optimal range and a reliable connection between
the emitter and the receiver. The choice of 10nF and 2.2k for the high-pass gives us an Fcritical
of around 7 kHz, and an Fpass of about 14 kHz. The choice of those two values for the resistor
and capacitor in particular was based on our desire to keep our resistor values between 1k and
1M, the availability of components, and their RC which allowed us the passing frequency that
we wanted. The low pass used 100pF and 33k to give us an Fcritical of about 48 kHz and an
Fpass of about 24 kHz. The choice of those two values for the components was based on the
same range of resistor values as for the high pass, the availability of components and their RC.
The use of op amps allowed us to repeat the same values twice (in order to filter twice) without
thevenin issues, at the same time as amplifying the circuit with a gain of R21/R20 (and
R23/R22), so of about 15 for each filter. This circuit filtered around the range of 14 kHz and 24
kHz, which was the band of frequencies that we wanted (since it is near to the 18-22 kHz
range).

 12

Figure 10: Yellow: processed signal. Blue: first amplification. Purple: second amplification.

 13

8. Comparator

Figure 11

Sub-Circuit Functionality and Explanation
The sine wave output that comes from the band pass filter is connected to the positive terminal
of the LM311 comparator which allows us to generate a square wave. The comparator has 0.3V
of hysteresis to ensure that the square wave is not overly affected by noise. The square wave
then goes through a 100 pF capacitor to remove any DC offsets.

Sub-Circuit Design Justification
We chose to use the LM311 comparator because it is faster than an op amp, we weren’t using a
large number of comparators (so we didn’t need the two op amps in the package), and it
allowed us to use hysteresis. We wanted the sine wave going into the positive terminal to come
out of the LM311 as a “high” if above 0V and a “low” if below 0V (to get a square wave), but in
order to make sure that the transitions were clean around the 0V cut-off (since noise could
cause jumping) we added in 0.3 V of hysteresis. We thought 0.3V was a good value since it is
very near 0V but also large enough that it cuts out the noise around ground, and because it was
more than the noise level that we were observing on that line. We used 47k and 3k resistors
because they are in the 1k-1M range and because 3/(47+3) = 3/50 = 0.06, and 0.06*5 = 0.3 V.
We chose to use 10k for R24 since the value had to be less than the input impedance on pin 14
(PLL) divided by 10 to avoid thevenin loading issues, and the datasheet for the PLL listed its
input resistance as 150kΩ. The 100 pF capacitor was chosen as the ‘4046 application notes
suggests adding this small capacitor. Upon reflection, this capacitor is likely only recommended
to remove any DC offset that the FM signal may have had. As our design does not have a DC
offset, it is likely that we could have removed this capacitor.

 14

9. Phase Locked Loop

Figure 12

Sub-Circuit Functionality and Explanation
The phase-locked loop (PLL) takes the square wave from the comparator as an input. The
phase comparator compares the phase to the one generated by the voltage controlled oscillator
(VCO), and then generates a signal which is filtered using a low pass becoming the “error
signal”. The difference in frequencies when we change between 22 kHz and 18 kHz makes a
different error voltage, which we can then compare so that we have a “high” and a “low” signal
depending on the incoming frequencies.

Sub-Circuit Design Justification
Using the application notes [3] we determined the rough outline for how to use the chip based
on a sample FM modulation design that was provided. The notes also said how to calculate the
values of the various resistors and capacitors. R29 and C10 had to allow us to stay within the
frequency capture range (and also determined what that range was). By using the equation
given and choosing the capture range to be 4 kHz (centred around 20 kHz) we calculated an
RC of 0.789s and we chose C10 to be 100uF and R29 to be about 8k; however, we used a 10k
potentiometer in order to modify the resistance while we were testing the phase locked loop with
the oscilloscope, since a very small change resulted in a large difference in locking and so the
5% tolerances were not precise enough. This was why we decided on 100uF and 8k: it made it
possible to use the 10k potentiometer which was a fairly precise way of modifying the PLL so
that it would work. According to the graphs on the application notes for a centre frequency of 20
kHz we needed a capacitor of 33nF (C9) and a resistor value of 10k; however, again for the

 15

sake of flexibility with our circuit we decided to make the resistor into one 5k (R27) and one 10k
potentiometer (R28) so that it could be easily modified. The datasheet showed that the output
needed a pull-down resistor, and it used 100k in its example, so we decided to do the same.

Figure 13: PLL once it locked: the yellow is the input signal, the blue is the output of the phase comparator, the pink is

the output of the VCO and the green is the DC output of the PLL.

 16

10. PLL Signal Filtration

Figure 14

Sub-Circuit Functionality and Explanation
The output of the PLL is buffered and then passed through two low pass filters and then a
difference amplifier (AD623). The low pass filters are cascaded and serve to filter out some of
the noise that affects the PLL’s output voltage, and the difference amplifier does the same. The
reason for this circuit was to attempt to get a cleaner voltage output from the PLL, because we
had a lot of noise in our DC signal which was causing us problems.

Sub-Circuit Design Justification
We decided to buffer the output in order to minimize the amount of noise in our signal. However,
that did not work very well so we added the low pass filters to remove the harmonics in our
supposedly DC signal, so we made Fpass 50 Hz and Fcritical 100 Hz. We chose 1.6k and 1uF
at for the first low pass because the components were in the right range (the resistor is between
1k and 1M and the capacitor is not polarised which makes things easier), their RC is what we
wanted and also because it is possible to cascade them with another low-pass fairly easily (the
resistor in the next one will still be in the right range while respecting thevenin rules). The
second filter has the same Fpass and Fcritical but due to thevenin rules we had to make the
resistor bigger and the capacitor smaller (though we end up with the same RC). The difference
amplifier is configured so that the difference between the filtered signal and ground is amplified.
Using the formula Rg = 100 kΩ/(G − 1) from the AD623 datasheet, R33 is 150kΩ as this gave
us a difference amplification of 5/3, which we experimentally determined to reduce noise
enough to do signal processing on the output without exceeding the 0v - 5v range the
subsequent signal processing performs [4].

 17

11. Filtered PLL Signal Processing

Figure 15

Sub-Circuit Functionality and Explanation
The non-inverting summer subtracts 3.6 V from the output of the difference amplifier, and the
new signal is then multiplied by 4. Finally, it passes through a comparator which gives us a high
or a low signal depending on its input (and so we have a high or a low depending on the
different frequencies that are sent by the emitter).

Sub-Circuit Design Justification
We used an inverting summer to subtract 3.6 V from the difference amplifier signal. The reason
behind this was that the difference between the high frequency voltage and the low frequency
voltage was not large enough to constitute a HIGH or a LOW and still had errors, but in order to
multiply it and get a bigger difference between the voltages we needed to make them smaller
(otherwise they would go past the bounds of Vcc and Vee). 1.8kΩ and 6.8kΩ were not originally
chosen because the voltage divider equation would suggest that it should be 6.8kΩ and 2.7kΩ
to get about -3.6V. However, our ground was so noisy that none of the calculations were
completely right, and so by checking on the oscilloscope and experimentation we managed to
get to -3.6V by lowering the 2.7kΩ resistor value to 1.8kΩ. For the inverting summer to give us
just a subtraction we needed R38 and R39 to be the same, so we chose 11kΩ on the basis that
it was not a particularly commonly used value, though it really could have been anything in the
1kΩ to 1MΩ range (the same reasoning went into R34 and R35, since they just need to be the
same value). The non-inverting amplifier is supposed to multiply the voltages by 4 (to get the
largest difference between them without going outside the bounds of our components) and
originally, we used a 27kΩ and an 82kΩ resistor; but again, due to noise we changed the 27kΩ
to a 10kΩ and verified using the oscilloscope that we were indeed multiplying by four. The
LM311 is actually not using resistor values that are mathematically correct because the
reference should ideally be between 1V and 3.2V, whereas we currently have hysteresis at
0.5V; but due to the noise on ground and the continuing error in the signals the comparator
works to give a high of 5V when the incoming frequency is 18kHz and a low of 0V when the
incoming frequency is 22kHz. 0.5V of hysteresis made our signal high for half a duty cycle
rather than a whole one, but we later dealt with this problem in software.

 18

12. Receiving Micro-Controller

Figure 16

Sub-Circuit Functionality and Explanation
The microcontroller on the receiver receives a digital signal from the comparator. The software
polls this line for a rising edge and when a rising edge is detected, it undergoes a signal
acquisition routine that, when completes, checks that the received signal is indeed valid by
checking the bits. If a valid signal is received, it outputs a square wave on D5 to the speaker
circuitry and shifts out the address and question number of the most recent request to the serial
to parallel shift register. The push button is connected to D1 with the internal pullup activated
and with a low-pass filter to debounce the button. An interrupt triggered by the button allows TFs
to cycle through button addresses and see the associated question number.

Sub-Circuit Design Justification
Given time constraints we did not have time to design digital hardware to read the digital IR
signal. The Arduino additionally allows us to perform more involved signal verification steps to
prevent false positives if the PLL became unlocked. We used the same low-pass filter design as
for the transmitter Arduino as this was experimentally determined as a good solution. The diode
on the power supply is to isolate the bench power supply from the computer power supply when
we were debugging. The A2 debug pin is used when the debug flag is set to true and was used
to determine when the Arduino was polling the IR signal line by setting it HIGH then LOW
briefly. This let us scope both the signal and A2 to determine whether the Arduino code was
functioning as intended.

 19

13. Serial to Parallel Conversion

Figure 17

Sub-Circuit Functionality and Explanation
The 74HC595 receives serial data on DS on a rising edge on SHcp, and as it is double buffered,
an extra rising edge on STcp moves the data, that was just shifted into the outputs. This shift
register receives two four-bit numbers from the Arduino that are used to display the address and
question numbers on the Numitrons.

Sub-Circuit Design Justification
The 74HC595 serial to parallel shift register lets us connect two 4-bit display drivers, thus using
only three pins on the Arduino instead of eight. It also adds diversity to our digital circuitry as we
are using a new component over a ‘161 counter again.

 20

14. Question and Address Displays

Figure 18

Sub-Circuit Functionality and Explanation
The two 74LS247 7-segment drivers receive a 4-bit number from the shift register U18. DISP2
shows the address and DISP3 shows the associated question number. They are both
connected to a Numitron with 82Ω resistors.

Sub-Circuit Design Justification
The design justification for the resistor values follows along the same lines as it does for part 3.
We decided to build this circuit to add functionality to the design, so that the user could see both
the address and the question number simultaneously, rather than having only one or the other.
It also allowed us to use all the bits on the shift register U18.

 21

15. Harmonics Filtering

Figure 19

Sub-Circuit Functionality and Explanation
A level shifter creates a -5v – +5v square wave from the 0v - 5v Arduino output. This is buffered
to avoid thevenin loading issues and passed through two low-pass filters to filter out the higher
harmonics of the square wave to attain an approximate sine wave, which is more pleasant to
the ear of the frustrated and tired TFs and students alike (fig.19). This filtered signal is then
connected to a volume control.

Sub-Circuit Design Justification
We used the level shifter to maximise the volume of the speaker, by giving us a 10v difference
rather than a 5v difference. The output is then buffered so that we are able to use a lower value
resistor than 100kΩ to let us cascade two first order filters together. We initially tried to use an
inverting integrator op-amp to convert the square wave to a triangle wave and then filter the
attenuated harmonics, but when we built and tested this, we encountered the issue of not being
able to centre the integration accurately, resulting in different DC offsets and amplitudes every
time the square wave was generated. We thus decided to just filter the square wave directly.
With Fpass = 200Hz – this being the maximum frequency we are driving the speaker at – the
RC value we calculated for the two low-pass filters was 3.98E-4. With thevenin loading taken
into account we chose the values R47 = 1.8kΩ, C14 = 220nF, R48 = 82kΩ and C15 = 4.7nF,
based on what was available in the lab.

 22

Figure 20: The yellow trace shows the Arduino square wave output. The blue trace shows the signal after the first

filter and the purple trace, after the third stage. The purple trace approximates a sine wave well.

16. Volume Control

Figure 21

Sub-Circuit Functionality and Explanation
The potentiometer acts as a volume control dial to allow the TFs to lower the volume of the
speaker, should the students become too trigger-happy with requests or indeed, want to ignore
the students entirely.

Sub-Circuit Design Justification
This simple circuit buffers the voltage from the filtering circuit to avoid the thevenin loading
issues with using a 10kΩ potentiometer. We had a spare op-amp in the U16 package so this
was not a wiring issue.

 23

17. Speaker Circuitry

Figure 22

Sub-Circuit Functionality and Explanation
The volume control output is connected to a Class-B push-pull amplifier that amplifies the
current supplied to the speaker. This is used to give the TFs an audio indication of when a
request is made and cleared.

Sub-Circuit Design Justification
We chose the push-pull configuration as we had a design from the Theremin lab we could
modify to suit our purposes, which was especially useful given the time pressure we were under
at this stage of the process. The 10Ω resistors are simply fuse resistors that will burn up if there
is a short circuit somewhere, rather than destroying the power supply or the BJTs. The negative
feedback to the op-amp solves the issue of having the ±0.6v transition where the emitter is at 0v
that is characteristic of BJTs.

 24

III. Software and Protocols

Transmission Protocol
We are using a normally low asynchronous NRZ (non-return to zero) data communication
protocol. To begin transmission and to indicate to the receiver that there is an incoming signal,
the transmitter sends a start bit (0) followed by 8 bits of data, terminated with an end bit (0). In
total, 10 bits are transmitted that can be parsed by the receiver to determine whether the signal
is a valid one as described in the function comments.

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9

START Question
(1)

Question
(2)

Question
(4)

Question
(8)

Address
(4)

Address
(2)

Address
(1)

Clear END

Figure 23: Bit protocol

Figure 24: Timing graph of NRZ protocol.

Transmitter Microcontroller
The Finite State Machine code on the transmitter reads the data from the address selectors,
clear bit selector and question selector from the parallel to serial shift register and generates a
series of outputs to transmit the data when the transmit button is pressed. It also illuminates an
LED to indicate whether there is currently an active request or not.

When transmitting, the FSM loop looks at the next bit to transmit and goes to the appropriate
transmission state accordingly, while incrementing a ‘bits transmitted’ counter. When the start
bit, the eight data bits and end bit have been transmitted, the FSM loop returns to either state A
or D depending on request status.

As the transmission circuit uses a p-channel MOSFET to switch the transmission frequency, the
signal it transmits is an active LOW signal i.e. a high-bit at the receiver is a 0 transmitted bit.

 25

This is because during the construction phase, we used an n-channel MOSFET before
switching to the final solution. Rather than modify and test the code again, we decided that it
would be simpler to solve the issue in software on the receiver microcontroller.

The push button is on an interrupt and when triggered on the falling edge, the interrupt service
routine sets a flag to inform the foreground loop that there has been a button press. This means
that the code can run at a 4Hz FSM loop frequency to make the states simpler with no loop
counters and still respond seemingly immediately to a button press.

State Description Transmission (A0) Status LED (A1)

A Non-active status Waiting for button
press. When pressed, check clear bit

is not asserted.

0 0

B Activating Request. transmit 0. 1 1

C Activating request. Transmit 1. 0 1

D Active status. Waiting for button
press. When pressed, check clear bit

is asserted.

0 1

E Deactivating request. Transmit 0. 1 0

F Deactivating request. Transmit 1. 0 0
Figure 25: Transmission FSM states

Figure 26: FSM Directed Graph

 26

Receiver Microcontroller
The receiver microcontroller software has two functions: to display the current address number
and associated question number and to process the received signal and take action based on
them. When the button is pressed, an interrupt flag is set that tells the foreground program to
loop to the next address number.

The IR signal pin is not on an interrupt as if a false signal is repeatedly arriving, the program
would stall. The signal pin is polled and when the start 0 bit is detected, it begins a routine,
whereby before entering each next state, the program checks whether one period of the data
rate has elapsed. When it does, the program polls the signal pin again and adds the value to a
variable and increased a ‘bits received’ counter by 1. When the counter reaches 10, the
program terminates the signal collection routine and parses the signal, checking whether it is a
valid signal and if so, extracting the address, question and clear bit status. The program then
displays this on the displays and makes a sound.

We decided to implement the signal validation function as we found during testing that when the
PLL occasionally unlocked, the Arduino was returning incorrect data with no way of correcting
itself. This would mean that we would have to reset the Arduino, which in the context of stressed
Office Hours, is not the best user experience. The validation, while not foolproof, Allows the
Arduino to discard many invalid signals due to PLL unlocking.

While the speaker is playing, the Arduino is still looping through the FSM loop and is still able to
cycle displays when the button is pressed. It will not accept a new incoming signal until the
speaker has stopped playing.

When debug mode is activated, the Arduino pulses HIGH very quickly on pin A2 in order to be
able to see when the Arduino is sampling the IR signal. This was very useful in debugging the
code and timings initially (fig. 28).

 27

State Description Displays Speaker

A Standby State. Awaiting button press.
Awaiting rising edge on IR signal input.

No change

B Update displays state. Button pressed.
Clear flag.

Cycle address display (0-7) and
display question number for

corresponding address. 0 if no
active request.

C Start bit received. Begin signal
acquisition.

No change

D When one transmission clock cycle has
elapsed, poll the line and add the bit to

the incoming signal. Terminate
acquisition if final bit.

No change

E Signal acquisition complete. Verify
signal. If verified, process signal and

display data. Reset FSM for next
acquisition cycle.

Address and question of received
signal.

F Valid active request received. Speaker
gives audio indication of this. Remain in
this state for user-given amount of time.

No change ‘Received’
tone.

G Valid clear request received, speaker
gives audio indication with different

frequency. Remain in this state for user-
given amount of time.

No change ‘Cleared’
tone.

Figure 27: Receiver FSM states

 28

Figure 28: FSM Directed graph

Figure 29: Oscilloscope demonstrating the debug pin A2 (blue) and the incoming IR signal (green)

 29

IV. Design Narrative
When we were discussing different ideas for the final project, we began to realise that we both
wanted something that was fairly practical, and that we did not want to create a game. Then, as
we have both been in office hours and experienced the difficulty of their being so busy that it is
almost impossible to get a TF’s attention, we had the idea for the TF button.

When we had decided on the theme of our project, we talked to Professor Abrams about it, who
suggested that we look into IR transmission. We also spoke to Cal Miller about his project from
last semester in which he used ultrasound, and we learned a bit about how he had used a
phase-locked loop in order to do frequency demodulation. Andrea began to research the phase-
locked loop, and Nicolas started on the emitter digital design.

At first, Andrea looked up the individual parts of the phase-locked loop, such as the phase
comparator and the voltage controlled oscillator. She originally thought that we would have to
build the entire thing ourselves; however, Professor Abrams mentioned that there was a PLL
chip, the MC74HC4046 that we actually had in lab. At that point, Andrea’s job became reading
through the datasheets and application notes in order to figure out how to implement the chip in
the way that we wanted. Eventually, she found the application note for the implementation of the
PLL chip for frequency demodulation, and following the instructions and information provided
she calculated the required resistor and capacitor values, and figured out how to configure the
chip.

Nicolas, meanwhile, designed the emitter. Other than the digital logic we had learned in class
(using components such as counters) he also looked into a new chip, a double buffered parallel
to serial converter 74HC597. Looking through datasheets, he eventually understood how the
chip worked and implemented it. He also wrote the FSM code for the Arduino, which controls
the transmission circuitry.

We both worked on the receiver in order to sort out the unforeseen issues that cropped up.
While we knew from the start that we wanted a speaker to make some noise and some
numitrons to display the address and question number, we first had to clean up the signal that
we received. The phototransistor voltage needed to be processed by amplifying it and turning it
into a square wave. The PLL had to be tuned to the frequency of the emitter, which proved to be
harder than expected. The output of the PLL was so noisy that we needed to modify it quite a bit
before we could put it through a comparator.

The design of this part was done by both of us as we designed filters and op-amp circuits to get
the result that we wanted. We ran into a big issue when we discovered that our ground rail itself
was experiencing ±0.2v of noise, which rendered our filtering and signal processing efforts
useless. After establishing that the PLL chip was the one component responsible for the noise,
we tried several tricks suggested to us by Professor Abrams, such as running direct ground
wires to the chip, to no avail. After much frustration and time, Professor Abrams suggested we
use a difference amplifier to compensate for the noise. After Nicolas read through the

 30

application notes and built the circuit, we had much less noise on the signal and were able to do
further processing.

Once this was done, Nicolas dealt with the Arduino code once again and then we designed the
speaker circuitry based on the labs that we had done previously. Andrea then dealt with the
numitron display while Nicolas figured out how to use the serial to parallel converter 74HC595
drive the two displays from the Arduino. Once we had everything built, to our great delight, it
actually worked!

 31

V. Results

Parts/Goals Minimum Goals Expected Goals Stretch Goals

Range At least a 30 cm of
distance

From one table to
another at a distance
of 3m

Across the Lowell
dining hall

Noise Tolerance Works consistently in
lab conditions

Works consistently in
indoor non-lab
conditions

Works consistently
outdoors (and at the
SEAS design fair)

Scale At least three unique
button addresses are
possible

At least three unique
button addresses
possible and Users
can clear requests
once they have been
helped

Nine unique button
addresses possible
and Users can clear
requests once they
have been helped

Power Supply Functions with lab
power supplies

Transmitter works off
of single supply

Single-supply
operation

bkuk completed and tested successfully
fbsjkk not tested
jsnnsi not achieved

 32

VI. Conclusion
Barring a few small mistakes and some things to improve in the future, our project was a
success as deemed by the specifications we set out to achieve at the start of the process. It
works very well, is easy to use, and is fairly reliable.

In order to improve our design in the future there are a few modifications that we could make.
The data rate, currently at a very low 4Hz, could be faster if the RC time constant on the
transmitter LM555 control voltage circuit was smaller, but this would mean characterising the
PLL in much more detail to determine how much the rate of change of input frequencies would
affect it. Unfortunately, we did not have the time for this.

We could also improve our circuit on the receiver by using a more suitable hysteresis value for
the post-PLL comparator: 2V would probably be the right value to choose, but as it is currently
working we decided to leave our current build alone.

The receiver could also have been made using more digital hardware, by moving some of the
functions that are currently being performed by the Arduino off it, such as the initial IR signal
acquisition. This would make for a more complicated circuit and it would also rely less on code.
Likewise, with the transmitter circuitry, the Arduino was designed with the circuit with the
(correct) anticipation of having trouble with the PLL; however, with more time, most if not all of
the functions of that Arduino could be done in hardware.

Finally, it would be interesting to add some way of indicating when a bad signal was received,
such as when the PLL becomes unlocked midway through transmission. This would be done
using code. It would allow the user to know that something had gone wrong with the signal
rather than any part of the hardware if the TF button stopped working for some reason. A small
LED would achieve this.

Overall, both of us thoroughly enjoyed ourselves doing this project and indeed over the course
of the whole semester. We leave ES 52 with a sound understanding of fundamental circuit
design and with the desire to lock ourselves in a lab several times more during final project
seasons to come as we progress through our Harvard SEAS careers.

 33

VII. Bibliography
[1] Parallel to Serial Shift Register 74HC597 datasheet
http://assets.nexperia.com/documents/data-sheet/74HC_HCT597.pdf
[2] Serial to Parallel Shift Register 74HC595 datasheet
http://assets.nexperia.com/documents/data-sheet/74HC_HCT595.pdf
[3] PLL application notes
http://www.ti.com/lit/an/scha002a/scha002a.pdf
[4] Difference Amplifier datasheet
http://www.analog.com/media/en/technical-documentation/data-sheets/AD623.pdf
[5] PLL datasheet
http://www.ti.com/lit/an/scha003b/scha003b.pdf

Other research:
IR information
https://learn.sparkfun.com/tutorials/ir-communication
Phase-locked loop overview
http://www.radio-electronics.com/info/rf-technology-design/pll-synthesizers/phase-locked-loop-
tutorial.php
How demodulation works with the PLL
http://www.radio-electronics.com/info/rf-technology-design/fm-reception/fm-pll-detector-
demodulator-demodulation.php
Infrared emitters
http://www.futureelectronics.com/en/optoelectronics/infrared-emitters.aspx
FM demodulation techniques
http://www.radio-electronics.com/info/rf-technology-design/fm-reception/fm-demodulation-
detection-overview.php
One type of demodulator
http://www.eetimes.com/document.asp?doc_id=1275839
“PLL design fundamentals”
http://www.nxp.com/assets/documents/data/en/application-notes/AN535.pdf
PLL design tutorial for beginners
http://ece.wpi.edu/analog/resources/PLLTutorialISSCC2004.pdf
PLL chip datasheet
https://www.onsemi.com/pub/Collateral/MC74HC4046A-D.PDF
PLL chip application notes
http://www.onsemi.com/pub/Collateral/AN1410-D.PDF
Phototransistor datasheet
http://www.kingbrightusa.com/images/catalog/SPEC/WP3DP3BT.pdf

 34

VIII. Appendices

 35

 36

B. Transmitter Code
/**
 * Nicolas Weninger and Andrea Andrea Rodriguez-Marin Freudmann
 *
 * 24 April 2017
 *
 * FSM Code for the transmitter
 *
 * States: (P: pulse-enable, S: status LED) OUTPUTS
 * A - Non-active status Waiting for button press. When
 * pressed, check for clear bit. P0 S0
 * B - Activating Request. transmit 0. P1 S1
 * C - Activating request. Transmit 1. P0 S1
 * D - Active status. Waiting for button press. When
 * pressed, check clear bit. P0 S1
 * E - Deactivating request. Transmit 0. P1 S0
 * F - Deactivating request. Transmit 1. P0 S0
 *
 * Based on the FSM skeleton by David Abrams
 *
 * MRU:
 * 01/05/2017: Slowed frequency to 4Hz for better transmission.
 * Removed TRANSMISSION_ENABLE pin to reflect changes
 * in hardware.
 *
**/

// Constant variables set by the user before compiling to control program behaviour
const boolean debug = true; // when set to true, debugging statements sent to the PC
const int FSM_FREQ = 4; // set to frequency of state machine clock in Hz (max
500Hz)

// Program Variables

const int FSM_TIME = 1000/FSM_FREQ; // milliseconds per state cycle (do not change
this variable)
unsigned long CycleStart;
int CurState; // holds current/next state
int BitCounter = 0; // tells program what bit we are reading
volatile boolean startTransmission = 0;
byte ShiftData = 0;

// Hardware IO

const int SDIPIN = A5;
const int PLPIN = A2;
const int STCLK = A3;
const int SHCLK = A4;
const int BTNPIN = 1;

const int STATUS_LED = A1;
const int DATA_PULSE = A0;

void setup()
{
 CurState = 1; // initialize for first state in the program loop

 /* Set up serial port for debugging if enabled */

 37

 if (debug)
 {
 Serial.begin(9600); // This pipes serial print data to the serial
monitor
 Serial.println("Initialization complete.");
 }

 pinMode(DATA_PULSE, OUTPUT);
 pinMode(STATUS_LED, OUTPUT);
 pinMode(PLPIN, OUTPUT);
 pinMode(SHCLK, OUTPUT);
 pinMode(STCLK, OUTPUT);
 pinMode(SDIPIN, INPUT);
 pinMode(BTNPIN, INPUT_PULLUP);

 digitalWrite(DATA_PULSE, LOW);
 digitalWrite(STATUS_LED, LOW);
 digitalWrite(STCLK, LOW);
 digitalWrite(SHCLK, LOW);
 digitalWrite(PLPIN, HIGH);

 attachInterrupt(digitalPinToInterrupt(BTNPIN), ISRStartTransmission, FALLING);

}

//****************************
// FINITE STATE MACHINE LOOP
//****************************
void loop()
{

 CycleStart = millis(); // get time we started this FSM cycle

 if (debug)
 {
 Serial.print("Current State = ");
 Serial.println(CurState);
 Serial.println(readData(), BIN);
 Serial.println(BitCounter);
 }

 switch (CurState)
 {
 case 1:
 digitalWrite(DATA_PULSE, LOW);
 digitalWrite(STATUS_LED, LOW);

 if (startTransmission == 1 && !isClear() == 1) {
 startTransmission = 0;
 CurState = 2;
 }
 else {
 startTransmission = 0;
 CurState = 1;
 }
 break;

 case 2:
 digitalWrite(DATA_PULSE, HIGH);
 digitalWrite(STATUS_LED, HIGH);
 ShiftData = readData();

 38

 if (BitCounter == 8) {
 BitCounter = 0;
 CurState = 4;
 }
 else if (bitRead(ShiftData, BitCounter) == 0) {
 BitCounter++;
 CurState = 2;
 }
 else {
 BitCounter++;
 CurState = 3;
 }
 break;

 case 3:
 digitalWrite(DATA_PULSE, LOW);
 digitalWrite(STATUS_LED, HIGH);

 if (BitCounter == 8)
 CurState = 2;
 else if (bitRead(ShiftData, BitCounter) == 0) {
 BitCounter++;
 CurState = 2;
 }
 else {
 BitCounter++;
 CurState = 3;
 }
 break;

 case 4:
 digitalWrite(DATA_PULSE, LOW);
 digitalWrite(STATUS_LED, HIGH);

 if (startTransmission && isClear()) {
 startTransmission = 0;
 CurState = 5;
 }
 else {
 startTransmission = 0;
 CurState = 4;
 }
 break;

 case 5:
 digitalWrite(DATA_PULSE, HIGH);
 digitalWrite(STATUS_LED, LOW);
 ShiftData = readData();

 if (BitCounter == 9){
 BitCounter = 0;
 CurState = 1;
 }
 else if (bitRead(ShiftData, BitCounter) == 0){
 BitCounter++;
 CurState = 5;
 }
 else {
 BitCounter++;
 CurState = 6;

 39

 }
 break;

 case 6:
 digitalWrite(DATA_PULSE, LOW);
 digitalWrite(STATUS_LED, LOW);

 if (bitRead(ShiftData, BitCounter) == 0) {
 BitCounter++;
 CurState = 5;
 }
 else {
 BitCounter++;
 CurState = 6;
 }
 break;

 default:
 {
 }
 } // end of switch statement

 // wait one cycle before entering the next state (this simulates the FSM clock)
 while (millis() < (CycleStart + FSM_TIME)) {
 } // wait one FSM cycle
}

//***
// Function to read the data from the shift register.
//***
byte readData()
{
 digitalWrite(PLPIN, LOW);
 digitalWrite(STCLK, HIGH); // extra clock pulse to load data into
register.
 digitalWrite(STCLK, LOW);
 digitalWrite(PLPIN, HIGH); // the 74HC597 reads out the first bit BEFORE
the first rising edge.
 int data = digitalRead(SDIPIN) << 8; // make space for the 8 bits from shiftIn()
 data = data + shiftIn(SDIPIN, SHCLK, MSBFIRST); // shift in 7 bits and one
undefined bit.
 data = data >> 1; // shift out the LSB undefined bit and replace
MSB with first read bit
 return data;
}

//***
// Function to poll the clear bit. Returns true when clear switch is HIGH.
//***
boolean isClear()
{
 return !bitRead(readData(),7);

}

//***
// ISR for transmit button interrupt. Sets flag.
//***
void ISRStartTransmission()
{

 40

 startTransmission = 1;
}

 41

C. Receiver Code
/**
 * Nicolas Weninger and Andrea Rodriguez-Marin Freudmann
 *
 * 1 May 2017
 *
 * FSM Code for the receiver
 *
 * States:
 * A - Standby state. Awaiting button press. Awaiting rising edge on
 * IR signal input.
 * B - Button pressed. Cycle address display (0-7) and
 * display question number for corresponding
 * address. 0 if no active request. Clear flag.
 * C - Start bit received. Begin signal acquisition.
 * D - When one transmission clock cycle has elapsed,
 * poll the line and add the bit to the incoming
 * signal. Terminate acquisition if final bit.
 * E - Signal acquisition complete. Verify signal.
 * If verified, process signal and display data.
 * Reset FSM for next acquisition cycle.
 * F - If active request received, Speaker gives audio
 * indication of this. Remain in this state for
 * user-given amount of time.
 * G - If clear request received, speaker gives audio
 * indication with different frequency. Remain in
 * this state for user-given amount of time.
 *
 * Based on the FSM skeleton by David Abrams
 *
 * MRU:
 * 2/5/2017 - Made the speaker output active low to reduce
 * quiescent current draw.
 * Fixed getQuestionNumber() function
 * 2/5/2017 - Added extra state to make speaker sound for a
 * clear request.
 * 3/5/2017 - Fixed bug in code that would *occasionally* make
 * project not work at the design fair. An unlocked
 * PLL gives a high signal on IRSIGNALPIN, and the
 * FSM was not resetting to a non-reading state
 * correctly despite recognising that the signal was
 * not valid. Added CurState = 1 to state E.
***/
// define hardware IO pins
const int DATAPIN = A5;
const int CLOCKPIN = A3;
const int LATCHPIN = A4;
const int SPEAKERPIN = 5;
const int DEBUGPULSE = A2;

const int BTNPIN = 1;
const int IRSIGNALPIN = 3;

 42

// Constant variables set by the user before compiling to control program behaviour
const boolean debug = true; // when set to true, debugging statements sent to the PC
const int FSM_FREQ = 50; // set to frequency of state machine clock in Hz (max
500Hz)
const int TRANSMITTER_FREQ = 4; // freqency the data is being transmitted at
const int SPEAKERFREQ = 261; // frequency the speaker plays when a signal is
received
const int SPEAKERFREQ_2 = 196; // frequency speaker plays when clear request received
const int SPEAKERONTIME = 2; // length of time the speaker is on in seconds. (min 1
sec).

// Program Variables
const int FSM_TIME = 1000/FSM_FREQ; // milliseconds per state cycle (do not change
this variable)
const int SPEAKER_CYCLES = FSM_FREQ * SPEAKERONTIME;
unsigned long CycleStart;
int CurState; // holds current/next state

volatile boolean ButtonFlag = false; // flag for when button pressed on interrupt
boolean SpeakerFlag = false; // flag for when speaker is playing a tone
boolean SpeakerFlagClear = false; // flag for when speaker is playing a tone for
CLEAR request
int CurrentAddress = 0; // holds the current state of the 'address display'
int Questions[] = {0,0,0,0,0,0,0,0}; // holds the current question being asked by the
associated address
int IncomingSignal = 0; // the incoming signal. ACTIVE LOW SIGNAL.
byte ProcessedSignal = 0; // the processed signal. ACTIVE HIGH SIGNAL.
int StateCounter = 0; // a counter that lets us delay the FSM without
using delay()

unsigned long SignalStartTime = 0; // the time the start bit was detected
int CurrentBit = 0; // the current bit that was just read

void setup()
{
 CurState = 1; // initialize for first state in the program loop

 /* Set up serial port for debugging if enabled */
 if (debug)
 {
 Serial.begin(9600); // This pipes serial print data to the serial
monitor
 Serial.println("Initialization complete.");
 pinMode(DEBUGPULSE, OUTPUT);
 digitalWrite(DEBUGPULSE, LOW);
 }

 /* Setup Hardware pins */

 43

 pinMode(SPEAKERPIN, OUTPUT);
 pinMode(LATCHPIN, OUTPUT);
 pinMode(DATAPIN, OUTPUT);
 pinMode(CLOCKPIN, OUTPUT);
 pinMode(BTNPIN, INPUT_PULLUP);
 pinMode(IRSIGNALPIN, INPUT);

 digitalWrite(SPEAKERPIN,HIGH);
 digitalWrite(LATCHPIN,LOW);
 digitalWrite(DATAPIN,LOW);
 digitalWrite(CLOCKPIN,LOW);

 displayWrite(0,0);

 /* Setup interrupt pin for button */
 attachInterrupt(digitalPinToInterrupt(BTNPIN), ISRCycleDisplay, FALLING);
}

//****************************
// FINITE STATE MACHINE LOOP
//****************************
void loop()
{
 // Things to do before FSM loop
 CycleStart = millis(); // get time we started this FSM cycle

 if (CurrentBit != 0 && (millis() >= SignalStartTime + (CurrentBit*250))) // read
next bit on the line when 250ms has elapsed
 {
 CurState = 4;
 }
 else if (SpeakerFlag) // make noise if a valid signal has been received
 {
 CurState = 6;
 }
 else if (SpeakerFlagClear) // make noise if valid clear signal has been received.
 {
 CurState = 7;
 }

 if (debug)
 {
 Serial.print("Current State = ");
 Serial.println(CurState);
 }

 switch (CurState)
 {
 // State A
 case 1:
 speakerOff();

 44

 if (isButtonDown())
 CurState = 2;
 else if (pollIRSignal() && CurrentBit == 0) // only begin signal aquisition
if there is no signal being aquired currently
 CurState = 3;
 else
 CurState = 1;
 break;

 // State B
 case 2:

 CurrentAddress = (CurrentAddress + 1) % 8;
 displayWrite(CurrentAddress, Questions[CurrentAddress]);

 CurState = 1;

 break;

 // State C
 case 3:
 IncomingSignal = 1;
 CurrentBit = 1;
 SignalStartTime = millis();

 if (debug)
 {
 digitalWrite(DEBUGPULSE, HIGH); // Allows us to see on the oscilloscope
when the signal is being polled
 delay(3); // needed to see the trace
 digitalWrite(DEBUGPULSE, LOW);
 }

 CurState = 1;
 break;

 // State D
 case 4:

 IncomingSignal = (IncomingSignal << 1) + pollIRSignal();
 CurrentBit++;

 if (debug)
 {
 Serial.print("CurrentBit: ");
 Serial.println(CurrentBit);
 digitalWrite(DEBUGPULSE, HIGH); // Allows us to see on the
oscilloscope when the signal is being polled
 delay(3); // needed to see the trace
 digitalWrite(DEBUGPULSE, LOW);
 }

 if (CurrentBit == 10)

 45

 {
 CurrentBit = 0;
 CurState = 5;
 }
 else
 {
 CurState = 1;
 }

 break;

 // State E
 case 5:
 if (debug)
 {
 Serial.print("Signal: ");
 Serial.println(IncomingSignal,BIN);
 }
 if (signalCheck(IncomingSignal)) // if signal is verified, begin
processing
 {
 ProcessedSignal = processSignal(IncomingSignal);
 CurrentAddress = getAddress(ProcessedSignal);
 if (getClearBit(ProcessedSignal)) // the signal is a new request
 {
 Questions[CurrentAddress] = getQuestionNumber(ProcessedSignal); // set
the question for the address
 if (debug){
 Serial.println(Questions[CurrentAddress], BIN);
 Serial.println(ProcessedSignal,BIN);}
 CurState = 6; // give
audio indication
 SpeakerFlag = true;
 }
 else // the signal is a clear request
 {
 Questions[CurrentAddress] = 0; // clear the request
 CurState = 7; // give audio indication
 SpeakerFlagClear = true;
 }
 displayWrite(CurrentAddress, Questions[CurrentAddress]); // display most
recent update on displays
 }

 else // signal is not a valid signal
 {
 IncomingSignal = 0; // clear temporary variables and reset to state
A.
 ProcessedSignal = 0;
 CurrentBit = 0;
 CurState = 1;
 }

 46

 break;

 // State F
 case 6:
 speakerOn();
 StateCounter++;

 if (StateCounter == SPEAKER_CYCLES) // when speaker has been on for long
enough, reset to state A
 {
 CurState = 1;
 SpeakerFlag = false;
 StateCounter = 0;
 }
 else if (isButtonDown()) // Allow TFs to still cycle through requests
even if speaker is playing
 {
 CurState = 2;
 }

 break; // if SpeakerFlag not cleared, speaker will continue to play

 // State G
 case 7:
 speakerOnClear();
 StateCounter++;

 if (StateCounter == SPEAKER_CYCLES) // when speaker has been on for long
enough, reset to state A
 {
 CurState = 1;
 SpeakerFlagClear = false;
 StateCounter = 0;
 }
 else if (isButtonDown()) // Allow TFs to still cycle through
requests even if speaker is playing
 {
 CurState = 2;
 }

 default:
 {
 }
 } // end of switch statement

 while (millis() < (CycleStart + FSM_TIME)) {
 } // wait one FSM cycle
}

//***
// Function to write to the numitron displays by shifting out to register
//***

 47

void displayWrite(byte Address, byte Question)
{
 byte Data = Address + (Question << 4);
 shiftOut(DATAPIN, CLOCKPIN, MSBFIRST, Data);
 digitalWrite(LATCHPIN,HIGH);
 digitalWrite(LATCHPIN,LOW); // clocking the register data to the
outputs
}

//***
// ISR when the push button is pressed and sets a flag
//***
void ISRCycleDisplay()
{
 ButtonFlag = true;
}

//***
// function to poll the button flag and clear button flag
//***
boolean isButtonDown()
{
 if (ButtonFlag == true)
 {
 ButtonFlag = false;
 return true;
 }
 return false;
}

//***
// function to poll the IR SIGNAL line
//***
boolean pollIRSignal()
{
 return digitalRead(IRSIGNALPIN);
}

//***
// function to turn speaker on when request received.
//***
void speakerOn()
{
 tone(SPEAKERPIN, SPEAKERFREQ);
}

//***
// function to turn speaker on when CLEAR request received.
//***
void speakerOnClear()
{
 tone(SPEAKERPIN, SPEAKERFREQ_2);
}

 48

//***
// function to turn speaker off
//***
void speakerOff()
{
 noTone(SPEAKERPIN);
 digitalWrite(SPEAKERPIN, HIGH);
}

//***
// function to verify that the unprocessed signal received was accurate. Returns true
if so.
//***
boolean signalCheck(int Signal)
{
 if (bitRead(Signal, 0) && bitRead(Signal, 9)) // start and end bits confirmed
 {
 for (int i = 0; i < 8; i++)
 {
 if (bitRead(Signal, i+1) == 0)
 {
 return true; // likely to be a valid signal
 }
 }
 return false; // no signal will be all high bits. Any signal that is will be false
positive or incorrectly read.
 // potentially due to unlocked phase-locked loop or interference.
 }
 else
 {
 return false;
 }
}

//***
// function to strip the first and last bit off the raw signal and handle active low.
//***
byte processSignal(int Signal)
{
 bitWrite(Signal, 9, 0);
 return (byte)~(Signal >> 1); // flip bits to make active high
}

//***
// function to get address from processed signal. Returns address.
//***
byte getAddress(int Signal)
{
 return ((bitRead(Signal, 3)<<2) + (bitRead(Signal, 2)<<1) + (bitRead(Signal, 1)));
}

//***

 49

// function to get clear bit from processed signal. Returns clear bit.
//***
boolean getClearBit(int Signal)
{
 return (bitRead(Signal, 0));
}

//***
// function to get Question Number from processed signal. Returns question number.
//***
byte getQuestionNumber(int Signal)
{
 return ((bitRead(Signal, 4)<<3) + (bitRead(Signal, 5)<<2) + (bitRead(Signal, 6)<<1)
+ (bitRead(Signal, 7)));
}

